top of page
  • 작성자 사진sojungkwoen

20-029 Field-Angle-Resolved Magnetic Excitations as a Probe of Hidden-Order Symmetry in CeB_6

P. Y. Portnichenko, A. Akbari, S. E. Nikitin, A. S. Cameron, A. V. Dukhnenko, V. B. Filipov,

N. Yu. Shitsevalova, P. Čermák, I. Radelytskyi, A. Schneidewind, J. Ollivier, A. Podlesnyak,

Z. Huesges, J. Xu, A. Ivanov, Y. Sidis, S. Petit, J.-M. Mignot, P. Thalmeier, D. S. Inosov

Physical Review X 10, 021010 (2020)


In contrast to magnetic order formed by electrons’ dipolar moments, ordering phenomena associated with higher-order multipoles (quadrupoles, octupoles, etc.) are more difficult to characterize because of the limited choice of experimental probes that can distinguish different multipolar moments. The heavy-fermion compound CeB_6 and its La-diluted alloys are among the best-studied realizations of the long-range-ordered multipolar phases, often referred to as “hidden order.” Previously, the hidden order in phase II was identified as primary antiferroquadrupolar and field-induced octupolar order. Here, we present a combined experimental and theoretical investigation of collective excitations in phase II of CeB_6. Inelastic neutron scattering (INS) in fields up to 16.5 T reveals a new high-energy mode above 14 T in addition to the low-energy magnetic excitations. The experimental dependence of their energy on the magnitude and angle of the applied magnetic field is compared to the results of a multipolar interaction model. The magnetic excitation spectrum in a rotating field is calculated within a localized approach using the pseudospin representation for the Γ8 states. We show that the rotating-field technique at fixed momentum can complement conventional INS measurements of the dispersion at a constant field and holds great promise for identifying the symmetry of multipolar order parameters and the details of intermultipolar interactions that stabilize hidden-order phases.

#publication #paper #Condensed_Matter #Magnetism #Strongly_Correlated_Materials

조회수 1회댓글 0개

최근 게시물

전체 보기

· Date: August 20(Thu.), 2020 · Place: Online (ZOOM) & Konkuk Univ., Seoul · Website: · Overview : The origin of the asymmetry between matter and anti-matter

bottom of page